

als pulsationsfreie Direktantriebe mit Kompaktlagereinheit

als Rundtisch (HGR), Einbaumotor (HGE) und Kompaktlagereinheit (HGL) als Einbausatz

Seite	Thema
1	Deckblatt
2	Inhaltsverzeichnis
3-7	Das Baukastensystem der Hochgenauigkeitsantriebe
3	Einführung
4-5	Lagerung
6	Motoren
6	Winkelmess-Systeme
7	Servoregler
7	Einsatzbereiche
8-18	Hochgenauigkeitsantriebe – Baugrößen und Optionen
8	Übersicht
9	HGE 80-115/1-4
10	HGE 100-144/3-7
11 – 12	HGR 120-180/2-4
13 – 14	HGR 300-240/1-2
15 – 16	HGE 150-206/1-5
17 – 18	HGS 200-206/5-7
19-25	Technische Spezifikation
19	Legende
20	Motortyp 115, Nenndrehzahl 200/min, mit Wasserkühlung
21	Motortyp 144, Nenndrehzahl 200/min, mit Wasserkühlung
22	Motortyp 144/5, Nenndrehzahl 200 – 800/min, mit Wasserkühlung
23	Motortyp 180, Nenndrehzahl 200/min, mit Wasserkühlung
24	Motortyp 206 mit Wasserkühlung
25	Motortyp 240 mit Wasserkühlung
Anlagen	Zeichnungen Motortypen, Kompaktlagereinheiten, Form- und Lagetoleranzen
	Motortyp 115
	Motortyp 144
	Motortyp 180
	Motortyp 206
	Motortyp 206 im Schwenkgehäuse
	Motortyp 206 im Winkelgehäuse
	Motortyp 240 als Rundtisch

als Rundtisch (HGR), Einbaumotor (HGE) und Kompaktlagereinheit (HGL) als Einbausatz

Einführung

Einbaumotor (HGE) in langer, schlanker Ausführung mit maximaler Kippsteifigkeit. Rundtisch (HGR) mit maximaler Axialbelastbarkeit.

Kompaktlagereinheit (HGL) mit Mess-System, Abdichtung und Wasserkühlung.

Die dominanten Vorzüge dieser Antriebe von Schüssler Technik sind:

Pulsationsfreie Torquemotoren und Lagereinheiten höchster Genauigkeit bis 100 nm Integrierte Zylinderrollenlagerung ohne Fügestellen

🗂 für maximale Kippsteifigkeit mit Abtriebspulsation < 3 nm in der Güte eines hochwertigen Luftlagers.

Plan- und Rundlaufgenauigkeiten von 100 nm bei Reibmomenten < 0,3 Nm

🗇 durch den Einsatz von selektierten und beschichteten Zylinderrollen

Einhaltung der Form- und Lageabweichungen auf Lebenszeit

¬ durch verschleißfreie Zylinderrollen

Doppelte Kippsteifigkeit bei gleicher Baugröße

- ¬ gegenüber Standardlagern
- ¬ 10-fach gegenüber hydrostatischen Lagern
- ¬ 100-fach gegenüber aerostatischen Lagern

Systemgenauigkeit bis \pm 0,6 arcsec bei halbierter Baugröße durch Kombination von

- $\neg \ \ kleinen, integrierten Rundtischlagerungen bei h\"{o}herer Genauigkeit und doppelter Steifigkeit$
- ¬ kleinen Winkelmessringen mit der Genauigkeit von Messringen doppelter Größe durch den Einsatz zweier Abtastköpfe und Auswertebox

Minimale axiale Wellenverlagerung

Um den Antrieb an die jeweiligen Anforderungen anzupassen, können innerhalb einer Baugröße verschiedene Motorlängen und Lagergrößen, Mess-Systeme und Abdichtungsvarianten zusammengestellt werden.

Weiterhin können kundenspezifische Gehäuse, Einbausätze mit Lagerungen und Motorvarianten gefertigt werden.

Das Mess-System ist direkt in die Lagerung integriert.

Ziel ist es, unter Belastung hoher Radialkräfte die bei einer maximalen Torsionssteife geforderte Bahngenauigkeit oder auch Wiederholgenauigkeit einzuhalten.

Ein wichtiges Kriterium ist die Rundlaufgenauigkeit der Abtriebswelle mit dem Mess-System zur Erreichung einer hohen absoluten Genauigkeit und Erhaltung einer maximalen Signalgüte des Mess-Systems.

Eine hohe Kippsteifigkeit des Antriebs bringt die Voraussetzung einer minimalen Verlagerung des Mess-Systems und damit zur Einhaltung der absoluten Genauigkeit.

als Rundtisch (HGR), Einbaumotor (HGE) und Kompaktlagereinheit (HGL) als Einbausatz

Lagerung

Kompaktlagereinheit-HGL

Die Antriebe sind mit einer Axial-Radial-Lagereinheit höchster Genauigkeit ausgerüstet, die **Schüssler Technik** selbst fertigt.

Die wesentlichen Besonderheiten sind folgende:

Die Laufflächen der Wälzkörper befinden sich ohne Zwischenringe direkt auf der Welle zur Erreichung einer bis zu 5-fachen Kippsteifigkeit gegenüber Standard-Axial-Radiallagern. Damit ist die Anzahl der Fugen auf nur eine Anschraubfläche reduziert.

Die Lagereinheiten beinhalten das Mess-System sowie die Abdichtung mit Labyrinth und Sperrluft-Führung. Die Wasserkühlung wird durch das Einbaugehäuse abgedichtet und zugeführt.

Die Kompaktlagereinheiten erreichen die 10-fachen Kippsteifigkeiten gegenüber hydrostatischen Lagerungen bei gleicher Baugröße.

Plan- und Rundlaufabweichung der Abtriebswelle sind in Abstufungen von $0,1\,\mu\text{m}$, $0,3\,\mu\text{m}$, $1\,\mu\text{m}$ und $2\,\mu\text{m}$ lieferbar. Sonderausführungen in der Präzisionsklasse $100-200\,\text{nm}$ $(0,1-0,2\,\mu\text{m})$ Planlauf sind mit Rotorwellenkühlung möglich.

Diese Lagerungen sind mit verschleißfreien Zylinderrollen ausgerüstet.

Optional werden die Lager mit hochgenauen Rollen und Laufflächen versehen, um Rollenpulsationen unter 0,005 μ m (5 Nm) zu erreichen.

Die axiale Gesamtantriebspulsation mit dem Motor liegt bei 0,005 μ m (5 nm). Die Plan- und Rundlaufabweichung dieser Lagerungen liegen im Bereich von 0,1 bis 0,2 μ m. Je nach Drehzahl wird die Welle der Lagerung mit Wasser gekühlt.

Diese Lageroptimierung zur Minimierung der axialen Rollenpulsation und des Wärmeeintrages ist ein Schwerpunkt der **Schüssler Technik** Lagertechnologie.

Reibungsoptimierte Versionen der Lagerung sind bis 1000 min⁻¹ einsetzbar. Dabei wird ein minimales axiales Wachstum der Wellenplanfläche von $10\,\mu\text{m}$ erreicht.

Mit der Hohlwellenkühlung sind Wachstumswerte von maximal 5 μ m der Abtriebswelle möglich sowie eine Planlaufgenauigkeit von 100 nm $(0,1 \mu m)$.

Die Rotorwelle des Synchromotors ist thermisch von der Wellenlagerung entkoppelt.

Durch den Einsatz kleinerer Mess-Systeme werden Systemgenauigkeiten bis $\pm 0,6$ arcsec erzielt. Die Mess-Systeme haben die Genauigkeit von Messringen doppelter Größe durch den Einbau zweier Abtastköpfe und einer Auswertebox.

als Rundtisch (HGR), Einbaumotor (HGE) und Kompaktlagereinheit (HGL) als Einbausatz

Lagerung

Die hochpräzisen Lösungen von Schüssler Technik finden in verschiedensten Bereichen Anwendung:

In der Messtechnik als Dreh-/Schwenkeinheit Zum 3D-Fräsen (Hartbearbeitung) Für Dreh-/Fräseinheiten in der reibungsoptimierten Ausführung Für Anwendungen in der Lasertechnik

- ¬ Halber Bauraum
- Thöhere Genauigkeit bei kleinerem Laufbahndurchmesser
- ¬ Höherer möglicher Drehzahlbereich
- ¬ Verschleißfreie Zylinderrollen auf Lebenszeit
- The Keine Veränderung der Lagervorspannung nach Einlauf
- ¬ Geringer Energieeintrag der Lagerung = "Energieeffiziente Lagerung"
- ¬ Kleinere Reibmomente
- ¬ Geringerer Materialeinsatz
- ¬ Kostenvorteile

als Rundtisch (HGR), Einbaumotor (HGE) und Kompaktlagereinheit (HGL) als Einbausatz

Motoren

Die eingesetzten HGE- und HGR-Torquemotoren von **Schüssler Technik** sind hochpolige, permanent erregte, synchrone Servomotoren.

Die Motoren für Werkzeug- und Messmaschinen sind in Richtung minimalster Rast- und Lastpulsationsmomente entwickelt, um Schwingungen bei der Bearbeitung von Oberflächen zu vermeiden. Die Motoren haben somit keine Coggingeffekte.

Alle Motorenvarianten können als Sonderversion als rastmomentfreie Ausführung ausgelegt werden.

Für verschiedene Dynamikanforderungen und Drehzahlen sowie eine Version mit hoher Drehmomentkonstante stehen verschiedene Wicklungsvarianten zur Verfügung.

Winkelmess-Systeme

Die Auswahl des jeweiligen Mess-Systems erfolgt nach der absoluten Genauigkeit und der benötigten Strichzahl (Auflösung), die für den Anwendungsfall erforderlich ist.

- → HEIDENHAIN-Mess-Systeme bieten den Vorteil der Abstandscodierung durch mehrere Referenzmarken am Umfang, um nach einer kurzen Winkelbewegung nach einer jeweiligen Vorzugsdrehrichtung das Mess-System zu referenzieren. Optional können absolute Mess-Systeme mit EnDat 2.2-Auswertung (digital) eingesetzt werden.
- ¬ Mit 2 Messköpfen und der Interface Box EIB 1512-EnDat 2.2-Auswertung (digital) der Fa. HEIDENHAIN wird 1/3 der absoluten Genauigkeit des Mess-Systems von ±0,6 arcsec erreicht.
- ¬ RENISHAW-Mess-Systeme haben eine Referenzmarke am Umfang und bieten den Vorteil, Endschaltermarken zur Auswertung der Winkelbewegung anzubringen. Optional können absolute Mess-Systeme zum Einsatz kommen.
- Tur Erreichung einer hohen Torsionssteifigkeit ist das Mess-System direkt in die Lagerung integriert. Damit sind hohe kv-Faktoren (Verstärkungsfaktoren) mit dem Servoregler möglich.

als Rundtisch (HGR), Einbaumotor (HGE) und Kompaktlagereinheit (HGL) als Einbausatz

Servoregler

Die Torsionssteifigkeit wird maßgeblich vom eingesetzten Servoregler beeinflusst.

Voraussetzung dafür ist jedoch eine hohe Kippsteifigkeit und Rundlaufgenauigkeit der Lagerung, um den Mess-Systemfehler so klein wie möglich zu halten.

Ziel ist es, die Signalgüte des Mess-Systems nicht zu beeinflussen, um eine hohe Interpolierbarkeit im Servoregler zu erreichen.

Mit der erreichten hohen Mess-Signal-Auflösung sind Torsionssteifigkeiten bis 300 Nm/arcsec mit sehr schnellen Servoreglern möglich.

Servoregler der Fa. TRIAMEC, Schweiz arbeiten mit einem Reglertakt von 100 kHz ($10\,\mu$ s-Stromregelung). Dadurch wird eine maximale Bahntreue der Antriebe erreicht. Äußere Störabweichungen werden direkt ausgeregelt und mechanische Schwingungen aktiv gedämpft.

Zusätzliche aufwändige Regelalgorithmen, um Störgrößen zu kompensieren, entfallen.

Mit herkömmlichen Servoreglern (63 µs-Stromregelung) ist nur ein Teil der Torsionssteifigkeit erreichbar.

Die Reibungsoptimierung der Lagerung verbessert die Regelungseigenschaften des Antriebes, wodurch extreme Bahnübergänge exakt abgefahren werden können.

Einsatzbereiche

Zum Beispiel

- Tischantriebe zum Spiegelfräsen höchster Qualitätsgüte
- ¬ sehr genaue Rundtische sowie Fräs- und Drehachsen
- ¬ B-Achsen von Rundschleifmaschinen zur Positionshaltung ohne Bremse
- ¬ Schwenkachsen zur Hartbearbeitung von Werkstoffen wie Keramik oder gehärtetem Stahl
- nochgenaue Prüf- und Messeinrichtungen/Messmaschinen

Baugrößen und Optionen

H G R Rundtisch

H G E Einbaumotor

H G S Schwenkachse

H G L Kompaktlagereinheit

		Motortyp	Anzahl der Magnetreihen		Nennmor	nent m. Wa	sserkühl.		
		115 1–5		· 5	6 – 25 Nm				
1	Motortyp/Statorlänge	144	3-	45 – 135 Nm					
		180	2-	- 6		75 – 150 Nm	1		
		206	1-	. 9	i	75 – 500 Nn	n		
					Kippste	ifigkeit kN	m/mrad		
			Drehzahl min ⁻¹		200	400	800		
	Kompaktlagereinheit	HGL 80			12	12	7,5		
	Axial Radiallager integriert	HGL 100			35	35	20		
2	Baugröße nach Kippsteifigkeit	HGL 120	1- bis 4-re	ihig radial	16	16	-		
	u. Drehzahl	HGL 150	1- bis 2-re		55	55	35		
		HGL 150			35	35	20		
		HGL 200			100	66	-		
		200 min ⁻¹							
	Rollensätze und Vorspannung	400 min ⁻¹							
2.1	für vier Drehzahlvarianten	800 min ⁻¹							
		1200 min ⁻¹ in	Vorbereitung						
			2 <i>μ</i> m						
		Plan- und	1μm						
2.2	Genauigkeit	Rundlauf	-	nsarm, 0,003 (3 l	Nm) axiale Pul	sation			
			$0.1 \mu\text{m}$ Präzisionsklasse, < 3 Nm axiale Pulsation						
		Тур	Hersteller	Striche	1 Messko	opf 2 M	lessköpfe		
		0104H	Heidenhein	16.384	±3,7 arcs	•	,2 arcsec		
		0153H	Heidenhein	24.000	±2,5 arcs		1,8 arcsec		
3	Winkelmess-Systeme	0208H	Heidenhein	32.768	±1,9 arcs	ec ±C	,6 arcsec		
		0208R	Renishaw	32.768	± 7,5 arcse	ec ±1	,2 arcsec		
		0254H	Heidenhein	40.000	±1,8 arcs	ec ±0	,6 arcsec		
		Radialwellen	dichtung, FKM und	zusätzliche Sperr	luft				
4 Abtriebswellendichtung		Labyrinth mit V-Seal Ring (PU) Labyrinth mit V-Seal Ring (PU) und zusätzlicher Sperrluft							
		y	222						
5	Haltebremse	Option	Größe und Baua	ırt nach Kundenw	unsch				
6	Wasserkühlung Axial-Radial-Lagereinheit	Option							

als Einbaumotor mit höchster Kippsteifigkeit

(Motordaten siehe technische Spezifikation für Motortyp 115)

Typ HGE 80-115/1-4

		Leistungsdaten			
	Einheit	1	2	4	
Statorlänge	mm	30	60	100	
Stator 0 115	mm	115	115	115	
Maximalmoment n. Wicklungsvariante $[M_{max}]$	Nm	13	27	42	
Nennmoment, gekühlt (M _w)	Nm	6	12	19	
Nenndrehzahl (n_0)	min ⁻¹		400 oder 800		
Axial-Radiallager integrierte Lagerung Baugröße HGL 80 Rollensätze u. Vorspannung für drei Drehzahlvarianten	min ⁻¹	3 Va	arianten: 200/400)/800	
Kippsteifigkeit	kNm/mrad		12/12/7,5		
Plan-/Rundlauf	μm	Option: Option:		2 1 0,1-0,3	
Torsionssteifigkeit	Nm/arcsec	~ 5	~ 10	~ 17	
mit TRIAMEC-Servoregler 325 V – Nennspitzenspannung (V_{pp})	A	10/20	10/20	10/20	
Torsionssteifigkeit	Nm/arcsec	~ 1	~ 2	~ 3,5	
mit Standard-Servoregler 565V – Nennspitzenspannung (V_{pp})	A	4/8	4/8	4/8	
Kühlwasserdurchfluss	L/min	1,5	2,2	3,0	
Temperatur Δ des Kühlwassers	°C	5	5	5	
Massenträgheit	kgm²	0,0288	0,0294	0,03	
Gewicht (mit Al-Gehäuse)	kg	23	27	33	
Standard-Winkelmess-System ERA 4201C/Heidenhain abstandscodierte Referenzmarke, alle 30°	arcsec		emgenauigkeit, a n montierten Zust		
Einsatz eines absoluten Mess-Systems in Vorbereitung Ausgangssignal $1V_{\rm ss}$	Striche	± 2,5 16.384			
alle Winkelmess-Systeme erreichbare Übertragungsgenauigkeit	arcsec	2 – 5 nach Servoregler und Geschwindigkeit			
alle Winkelmess-Systeme Wiederholgenauigkeit	arcsec	\pm 0,5 $-$ 2 nach Interpolationshöhe vom Servoregler abhängig			
Labyrinth mit V-Seal-Ring Einsatz bis	min ⁻¹	800			
Option 1 Labyrinth mit V-Seal-Ring und zusätzlicher Sperrluft JP67 Einsatz bis	min ^{·1}	800			

als Einbaumotor mit höchster Kippsteifigkeit

(Motordaten siehe technische Spezifikation für Motortyp 144)

Typ HGE 100-144/3-7

			Leistung	sdaten	
	Einheit	3	5		7
Statorlänge	mm	81	13!	5	189
Stator 0 144	mm	144	144		144
Maximalmoment n. Wicklungsvariante (M _{max})	Nm	70	120)	170
Nennmoment, gekühlt (M _w)	Nm	35	60)	85
Nenndrehzahl (n ₀)	min ⁻¹		200 ode	er 800	
Axial-Radiallager integrierte Lagerung Baugröße HGL 100 Rollensätze u. Vorspannung für drei Drehzahlvarianten	min ⁻¹	3 Va	arianten: 20	00/400/	800
Kippsteifigkeit	kNm/mrad		35/35	/20	
Plan-/Rundlauf	μm	Option: 0,:		2 1 0,1-0,3	
Torsionssteifigkeit	Nm/arcsec	~ 30	~ 5	0	~ 80
mit TRIAMEC-Servoregler 325 V – Nennspitzenspannung (V_{pp})	A	20/40	20/4	40	20/40
Torsionssteifigkeit	Nm/arcsec	~ 6	~ 10		~ 16
mit Standard-Servoregler 565V – Nennspitzenspannung (V_{pp})	A	12/24	12/24		12/24
Kühlwasserdurchfluss	L/min	5,5	8		10
Temperatur Δ des Kühlwassers	°C	5	5		5
Massenträgheit	kgm²	0,0372	0,0	4	0,0428
Gewicht (mit Stahl-Gehäuse)	kg	58	62		66
Standard-Winkelmess-System ERA 4201C/Heidenhain abstandscodierte Referenzmarke, alle 30° Einsatz eines absoluten Mess-Systems in Vorbereitung Ausgangssignal 1V _{ss}	arcsec Striche	Systemgenauigkeit, absolut im montierten Zustand ± 2,5 24,000			
alle Winkelmess-Systeme erreichbare Übertragungsgenauigkeit	arcsec	2 – 5 nach Servoregler und Geschwindigkeit			
alle Winkelmess-Systeme Wiederholgenauigkeit	arcsec	\pm 0,5 $-$ 2 nach Interpolationshöhe vom Servoregler abhängig			
Labyrinth mit V-Seal-Ring Einsatz bis	min ⁻¹	800			
Option 1 Labyrinth mit V-Seal-Ring und zusätzlicher Sperrluft JP67 Einsatz bis	min ⁻¹	800			

als Rundtisch

Typ HGR 120-180/2-4

			Leistun	gsdaten	
	Einheit	2	3	3	4
Statorlänge	mm	90	12	20	150
Stator Ø 180	mm	180	18	30	180
Maximalmoment n. Wicklungsvariante (M _{max})	Nm	130	18	30	220
Nennmoment, gekühlt (M _w)	Nm	75	10	00	125
Nenndrehzahl (n ₀)	min ⁻¹		200 od	ler 600	
Axial-Radiallager integrierte Lagerung Baugröße HGL 120 Rollensätze u. Vorspannung für drei Drehzahlvarianten	min ⁻¹	Ž	2 Varianter	n: 200/40	0
Kippsteifigkeit	kNm/mrad	16/16			
Plan-/Rundlauf	μ m	Option: Option:		2 1 0,5	
Torsionssteifigkeit	Nm/arcsec	~ 70	~ !	90	~ 110
mit TRIAMEC-Servoregler 565 V – Nennspitzenspannung (V _{PP})	А	10/20	10/20		10/20
Torsionssteifigkeit	Nm/arcsec	~ 12	~ :	15	~ 18
mit Standard-Servoregler 565V – Nennspitzenspannung (V_{pp})	А	6/12	6/12		6/12
Kühlwasserdurchfluss	L/min	8	8,5		9
Temperatur △ des Kühlwassers	°C	5	Ĺ	5	5
Massenträgheit	kgm²	0,107	0,1	.11	0,116
massentiagnett	kgm²	0,129	1,1	.34	0,138
Gewicht (mit Al-Gehäuse)	kg	72,3	78	3,5	84,8

als Rundtisch

Typ HGR 120-180/2-4

		Leistungsdaten	
Einheit	2	3	4

Winkelmess-System

Standard ERA 4282C/Heidenhain abstandscodierte Referenzmarke, alle 22,5° Einsatz eines absoluten Mess-Systems in Vorbereitung Ausgangssignal 1V _{ss}	arcsec	Systemgenauigkeit, absolut im montierten Zustand ± 1,9	Striche 32.768
Option 1 ERA 4282C/Heidenhain abstandscodierte Referenzmarken Ausgangssignal 1V _{ss}	arcsec	± 1,8	40.000
Option 1.1 Mit 2 Messköpfen und EnDat 2.2-Auswertung (digital) mit Interface Box EIB 1512	arcsec	± 0,6	
Option 2 Winkelmess-System "SIGNUM" RESM20-USA206 mit einer Referenzmarke am Umfang mit Endschalterkennung Ausgangssignal 1V _{ss}	arcsec	± 7,5	32.768
alle Winkelmess-Systeme erreichbare Übertragungsgenauigkeit	arcsec	2 – 5 nach Servoregler und Geschwindigkeit	
alle Winkelmess-Systeme Wiederholgenauigkeit	arcsec	± 0,5-2 nach Interpolationshöhe vom Servoregler abhängig	

Abdichtung Welle

Standard Labyrinth mit V-Seal-Ring JP67 Einsatz bis	min ⁻¹	400
Option 1 Labyrinth mit V-Seal-Ring und zusätzlicher Sperrluft JP67 Einsatz bis	min ^{.1}	400

als Rundtisch

Typ HGR 300-240/1-2

		Leistun	gsdaten
	Einheit	1	2
Statorlänge	mm	25	50
Stator 0 240	mm	240	240
Maximalmoment n. Wicklungsvariante (M _{max})	Nm	100	200
Nennmoment, gekühlt (M _w)	Nm	50	100
Nenndrehzahl (n ₀)	min ⁻¹	30	00
Axial-Radiallager integrierte Lagerung Baugröße HGL 120 Rollensätze u. Vorspannung für drei Drehzahlvarianten	min ⁻¹	30	00
Kippsteifigkeit	kNm/mrad	6	0
Plan-/Rundlauf	μm	Option: Option:	1 0,5 0,2-0,3
Torsionssteifigkeit	Nm/arcsec	~ 45	~ 90
mit TRIAMEC-Servoregler 565V – Nennspitzenspannung (V _{PP})	A	10/20	10/20
Kühlwasserdurchfluss	Nm/arcsec	~ 8	~ 15
mit Standard-Servoregler 565V – Nennspitzenspannung (V _{PP})	A	4/8	6/12
Kühlwasserdurchfluss	L/min	8	10
Temperaturr △ des Kühlwassers	°C	5	5
Massenträgheit	kgm²	0,108	0,140
Gewicht (mit Stahl-Gehäuse)	kg	34	44

als Rundtisch

Typ HGR 300-240/1-2

	Leistungsdaten	
Einheit	1	2

Winkelmess-System

Standard ERA 4282C/Heidenhain abstandscodierte Referenzmarke, alle 22,5° Einsatz eines absoluten Mess-Systems in Vorbereitung Ausgangssignal 1V _{ss}	arcsec	Systemgenauigkeit, absolut im montierten Zustand $\pm 1,9$	Striche 32.768
Option 1 Mit 2 Messköpfen und EnDat 2.2-Auswertung (digital) mit Interface Box EIB 1512	arcsec	± 0,6	
alle Winkelmess-Systeme erreichbare Übertragungsgenauigkeit	arcsec	2 – 5 nach Servoregler und Gesch	windigkeit
alle Winkelmess-Systeme Wiederholgenauigkeit	arcsec	± 0,5 – 2 nach Interpolationshöhe vom Servo	oregler abhängig

Abdichtung Welle

Standard Labyrinth mit V-Seal-Ring JP67 Einsatz bis	min ⁻¹	300
Option 1 Labyrinth mit V-Seal-Ring und zusätzlicher Sperrluft JP67 Einsatz bis	min ⁻¹	300

als Einbaumotor mit höchster Kippsteifigkeit

Typ HGE 150-206/1-5

			Leistung	gsdaten	
	Einheit	1	3	;	5
Statorlänge	mm	40	8:	1	135
Stator 0 206	mm	206	20)6	206
Maximalmoment n. Wicklungsvariante (M _{max})	Nm	135	28	30	480
Nennmoment, gekühlt (M _w)	Nm	75	14	10	240
Nenndrehzahl (n ₀)	min ⁻¹		400 od	er 800	
Axial-Radiallager integrierte Lagerung Baugröße HGL 150 Rollensätze u. Vorspannung für drei Drehzahlvarianten	min ⁻¹	3 Varianten: 200/400/800			
Kippsteifigkeit	kNm/mrad	Lagervariationen 65/55/35 35/35/20			
Plan-/Rundlauf	μm	Option:			2 1 0,2-0,3
Torsionssteifigkeit	Nm/arcsec	~ 70	~ 1	30	~ 220
mit TRIAMEC-Servoregler 565 V – Nennspitzenspannung (V_{pp})	А	20/40	20/	'40	20/40
Torsionssteifigkeit	Nm/arcsec	~ 12	~ 7	25	~ 40
mit Standard-Servoregler 565V – Nennspitzenspannung (V_{pp})	А	15/30	15/	30	15/30
Kühlwasserdurchfluss	L/min	6	17	2	12
Temperatur △ des Kühlwassers	°C	5	5		5
Massenträgheit	kgm²	0,085	0,0	92	0,10
Gewicht (mit Stahl-Gehäuse)	kg	98	11	.0	126

als Einbaumotor mit höchster Kippsteifigkeit

(Motordaten siehe technische Spezifikation für Motortyp 206)

Typ HGE 150-206/1-5

		L	eistungsdaten	
	Einheit	1	3	5
Winkelmess-System				
Standard ERA 4282C/Heidenhain abstandscodierte Referenzmarke, alle 22,5° Einsatz eines absoluten Mess-Systems in Vorbereitung Ausgangssignal 1V _{ss}	arcsec	Systemgenauigke montierten 7 ± 1,9	Zustand	Striche 32.768
Option 1 ERA 4282C/Heidenhain abstandscodierte Referenzmarken Ausgangssignal 1V _{ss}	arcsec	± 1,8	3	40.000
Option 1.1 Mit 2 Messköpfen und EnDat 2.2-Auswertung (digital) mit Interface Box EIB 1512	arcsec	± 0,6	5	
Option 2 Winkelmess-System "SIGNUM" RESM20-USA206 mit einer Referenzmarke am Umfang mit Endschalterkennung Ausgangssignal 1V _{ss}	arcsec	± 7,5	5	32.768
alle Winkelmess-Systeme erreichbare Übertragungsgenauigkeit	arcsec	2 – 5 nach Servoregler und Geschwindigkeit		windigkeit
alle Winkelmess-Systeme Wiederholgenauigkeit	arcsec	± 0,5 – 2 nach Interpolationshöhe vom Servoregler abhängi		oregler abhängig

Abdichtung Welle

Standard Labyrinth mit V-Seal-Ring JP67 Einsatz bis	min ⁻¹	800
Option 1 Labyrinth mit V-Seal-Ring und zusätzlicher Sperrluft JP67 Einsatz bis	min ⁻¹	800

als Schwenkachse mit Haltebremse

Typ HGS 200-206/5-7

		Leistun	gsdaten
	Einheit	5	7
Statorlänge	mm	135	50
Stator Ø 206	mm	206	240
Maximalmoment n. Wicklungsvariante $\left(M_{max}\right)$	Nm	480	200
Nennmoment, gekühlt (M _w)	Nm	240	100
Nenndrehzahl (n ₀)	min ⁻¹	200 oc	ler 400
Axial-Radiallager integrierte Lagerung Baugröße HGL 200 Rollensätze u. Vorspannung für drei Drehzahlvarianten	min ⁻¹	200/400	
Kippsteifigkeit	kNm/mrad	100/66	
Plan-/Rundlauf	μm	YRT 120/150 integriert: 2 Option: 1 Option: 0,5	
Torsionssteifigkeit	Nm/arcsec	~ 220	~ 350
mit TRIAMEC-Servoregler 565V – Nennspitzenspannung $\{V_{pp}\}$	А	20/40	20/40
Torsionssteifigkeit	Nm/arcsec	~ 40	~ 60
mit Standard-Servoregler 565V – Nennspitzenspannung $\{V_{pp}\}$	A	15/30	15/30
Kühlwasserdurchfluss	L/min	12	12
Temperatur Δ des Kühlwassers	°C	5	5
Massenträgheit	kgm²	0,242	0,253
Gewicht (mit Al-Gehäuse)	kg	220	250

Winkelmess-System

Standard ERA 4201C/Heidenhain abstandscodierte Referenzmarke, alle 30° Einsatz eines absoluten Mess-Systems in Vorbereitung Ausgangssignal 1V _{ss}	arcsec	Systemgenauigkeit, absolut im montierten Zustand ± 1,9	Striche 32.768
Option 1 Mit 2 Messköpfen und EnDat 2.2-Auswertung (digital) mit Interface Box EIB 1512	arcsec	± 0,6	
Option 2 Winkelmess-System "SIGNUM" RESM20-USA206 mit einer Referenzmarke am Umfang mit Endschalter- kennung Ausgangssignal 1V _{ss}	arcsec	± 7,5	32.768
alle Winkelmess-Systeme erreichbare Übertragungsgenauigkeit	arcsec	2 – 5 nach Servoregler und Geschwindigkeit	
alle Winkelmess-Systeme Wiederholgenauigkeit	arcsec	\pm 0,5 $-$ 2 nach Interpolationshöhe vom Servoregler abhängig	

als Schwenkachse mit Haltebremse

(Motordaten siehe technische Spezifikation für Motortyp 206)

Typ HGS 200-206/5-7

		Leistur	igsdaten
	Einheit	5	7
Abdichtung Welle			
Standardabdichtung Fluorkautschuk (FKM) 0260 mit Sperrluft JP65 Einsatz bis	min ⁻¹	2	00
Option 1			

min⁻¹

200

Bremse

Einsatz bis

Labyrinth mit V-Seal-Ring und zusätzlicher Sperrluft

Permanentmagnet-Einflächenbremse; 24 VDC Haltemoment als Haltebremse	Nm	300
Option 1 Hydraulische Bremse Haltemoment	Nm	400

Innenkühlung Rotorwelle zur Minimierung des axialen Wachstums

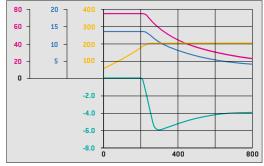
Kühlwasserdurchfluss	L/min	5
Temperatur △ des Kühlwassers	°C	5

0	Stator-Innendurchmesser (stator inside diameter)			
PP	Polpaarzahl (number of pole pairs)			
AL	Aktivlänge (active length)			
U _o	Effektivwert der Reglerspeisespannung (effective value of controller supply voltage)			
Ûo	Spitzenwert der Reglerspeisespannung (effective value of controller supply voltage)			
U_{max}	Maximale Spitzenspannung (maximum peak voltage)			
R _{uv}	Klemmenwiderstand bei 20 °C (resistance at terminals at 20 °C)			
L _{uv}	Klemmeninduktivität bei 20 °C (inductance at terminals at 20 °C)			
t _{RL}	Zeitkonstante bei 20 $^{\circ}$ C (time constant at 20 $^{\circ}$ C)			
\mathbf{n}_{0}	Nenndrehzahl (rated rotation)			
n _{max}	Maximaldrehzahl (maximum rotation)			
P _{W,IN}	Nennleistungsaufnahme (rated power input)			
P _{w,out}	Nennleistungsabgabe (rated power output)			
P _{w,DIS}	Abzuführende Verlustleistung (required power dissipation)			
Q _{w,5K}	Nennkühlwasserdurchfluss bei $\Delta T=5$ K (Nominal cooling water flow at $\Delta T=5$ K)			
Q _{ws,5K}	Nennkühlwasserdurchfluss Stator bei $\Delta T=5$ K (Nominal cooling water flow for stator at $\Delta T=5$ K)			
Q _{wr,5K}	Nennkühlwasserdurchfluss Rotor bei $\Delta T = 5 \text{ K}$ (Nominal cooling water flow for rotor at $\Delta T = 5 \text{ K}$)			
M_{max}	Kurzzeitiges Maximalmoment (momentary torque limit)			
I _{max}	Kurzzeitiger Maximalstrom (momentary current limit)			
M _w	Maximales Nennmoment (maximum continuous torque)			
l _w	Maximaler Nennstrom (current at maximum continuous torque)			
Κυ	Effektivspannungskonstante (effective voltage constant)			
K _{U,P}	Spitzenspannungskonstante (peak voltage constant)			
Κ _τ	Drehmomentkonstante (torque constant)			
K _M	Motorkonstante (motor constant)			

Motortyp 115, Nenndrehzahl 200/min, mit Wasserkühlung

Motorbau	größe/Typ	115/1	115/2	115/4
Stator-I	Stator-Nummer		6.0080.061	6.0080.101
0	[mm]		80	
PP			14	
AL	[mm]	30	60	100
U₀/Û₀	$[V_{eff}/V_{P}]$		400/565	
U _{max}	[V _P]		630	
R _{uv}	[Ohm]	16	25	35
L _{uv}	[mH]	42	78	122
t _{RL}	[ms]	2,6	3,1	3,5
n _o	[1/min]	200		
N _{max}	[1/min]	400		
P _{w,in}	[W]	371	634	934
Р _{w,оит}	[W]	126	251	398
P _{W,DIS}	[W]	245	383	536
Q _{W,5K}	[dm3/min]	1,5	2,2	3,0
M _{max}	[Nm]	13	27	42
I _{max}	[A]	6	6	6
M _w	[Nm]	6	12	19
I _W	[A]	2,7	2,7	2,7
Κ _U	[V*min/1000]	140	270	460
K _T	[Nm/A]	2,2	4,4	7,0
K _M	[Nm/√W]	0,38	0,61	0,82

Motortyp 144, Nenndrehzahl 200/min, mit Wasserkühlung


Motorbau	größe/Typ	144/3	144/5	144/7
Stator-I	Stator-Nummer		6.0090.0136	6.0090.0138
0	[mm]		93	
PP			21	
AL	[mm]	81	135	189
U₀/Û₀	[V _{eff} /V _P]		400/565	
U _{max}	[V _P]		630	
R _{uv}	[Ohm]	12,3	6,2	4,1
L _{uv}	[mH]	78	47	33
t _{RL}	[ms]	6,3	7,5	8,0
n ₀	[1/min]	200		
N _{max}	[1/min]	800		
P _{w,in}	[W]	2740	4070	5400
Р _{w,оит}	[W]	940	1570	2200
P _{W,DIS}	[W]	1800	2500	3200
Q _{W,5K}	[dm3/min]	5,5	8,0	10,0
M _{max}	[Nm]	75	130	185
I _{max}	[A]	14	25	36
M _w	[Nm]	45	75	105
I _W	[A]	8,6	14,4	20,2
Κ _U	[V*min/1000]	310	310	310
K _T	[Nm/A]	5,2	5,2	5,2
K _M	[Nm/√W]	1,2	1,7	2,1

Motortyp 144/5, Nenndrehzahl 200 – 800/min, mit Wasserkühlung

Motorbau	144/5		
Stator-	Stator-Nummer		
0	[mm]	93	
PP		21	
AL	[mm]	135	
U₀∕Û₀	[V _{eff} /V _P]	400/565	
U _{max}	[V _P]	630	
R _{uv}	[Ohm]	6,2	
L _{uv}	[mH]	47	
t _{RL}	[ms]	7,5	
n _o	[1/min]	200	
n _{max}	[1/min]	800	
Pw,in	[W]	4070	
Р _{w,оит}	[W]	1570	
Pw,dis	[W]	2500	
Q _{W,5K}	[dm3/min]		
M _{max}	[Nm]	130	
I _{max}	[A]	25	
M _w	[Nm]	75	
I _w	[A]	14,4	
K u	[V*min/1000]	450	
Κ _τ	[Nm/A]	5,2	
K _M	[Nm/√W]	1,7	

Moment, Strom, Spannungscharakteristik

--- Moment (Nm)
--- I_q (A_{eff})
--- I_d (A_{eff})
--- U (V)

Drehzahl (1/min)

Moment	abgegebenes Drehmoment (torque output)		
I _q	aufgenommener Wirkstrom (active current consumption)		
I _d	aufgenommener Blindstrom (blind current consumption)		
U	erforderliche Klemmenspannung (required line-to-line voltage)		

Motortyp 180, Nenndrehzahl 200/min, mit Wasserkühlung

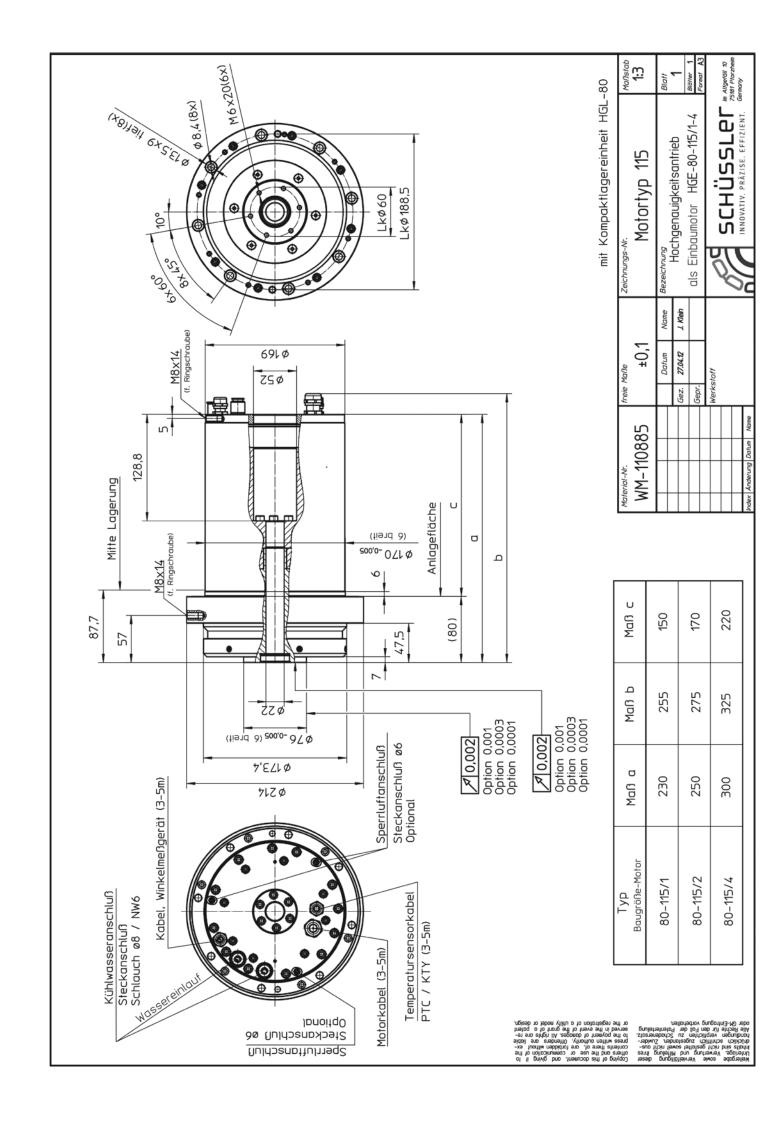
Motorbaugröße/Typ		180/3	180/4	180/5
Stator-Nummer		6.0130.003	6.0130.004	6.0130.005
0	[mm]	130		
PP		21		
AL	[mm]	90	120	150
U _o /Û _o	$[V_{eff}/V_P]$	400/565		
U _{max}	[V _P]	670		
R _{uv}	[Ohm]	78,6	48,5	32,9
L _{uv}	[mH]	253	190	152
t _{RL}	[ms]	3,2	3,9	4,6
n _o	[1/min]	200		
N _{max}	[1/min]			
P _{w,in}	[W]	4200	4970	5670
P _{w,out}	[W]	1570	2090	2620
P _{w,DIS}	[W]	2630	2880	3050
Q _{w,5K}	[dm3/min]	8,0	8,5	9,0
M _{max}	[Nm]	130	180	220
I _{max}	[A]	6,9	9,6	11,7
M _w	[Nm]	75	100	125
I _W	[A]	4,0	5,3	6,6
Κ _υ	[V*min/1000]	1140	1140	1140
K _T	[Nm/A]	18,8	18,8	18,8
K _M	[Nm/√W]	1,7	2,2	2,7

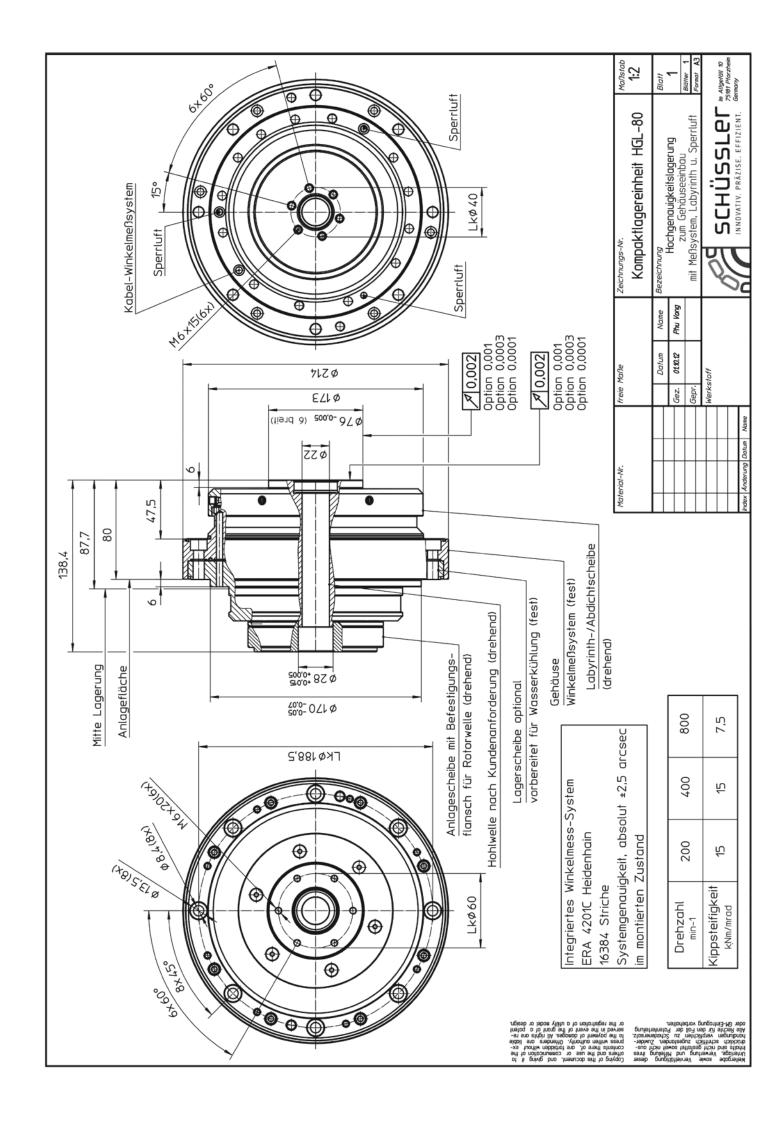
Motortyp 206, Nenndrehzahl 200/min oder 400/min, mit Wasserkühlung

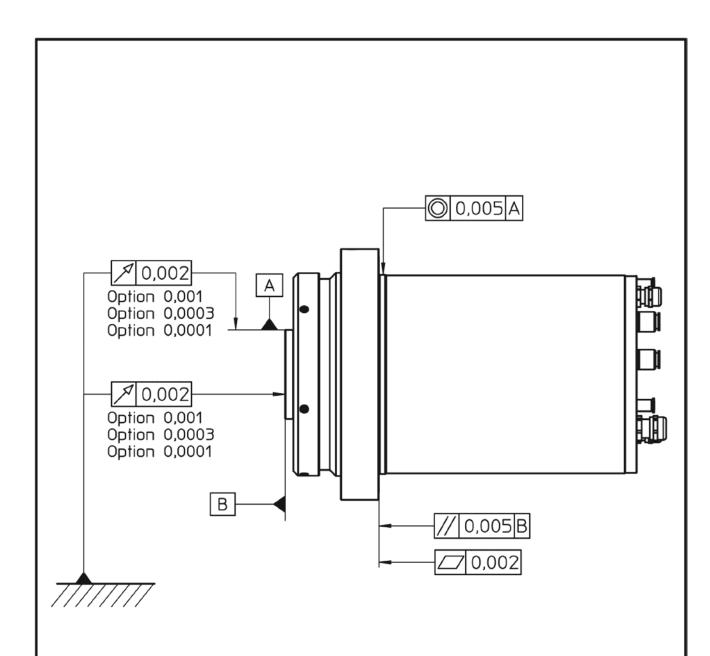
Motorbaugröße/Typ		206/1	206/3	206/5	206/7
Stator-Nummer		6.0160.041/1	6.0160.0081	6.0160.0135	6.0160.189/4
0	[mm]	160			
PP			21		
AL	[mm]	40	81	135	189
U _o /Û _o	$[V_{eff}/V_{P}]$	400/565			
U _{max}	[V _P]	650			
R _{uv}	[Ohm]	3,1	7,8	5,3	9,1
L _{uv}	[mH]	14,0	54,5	66,0	55,6
t _{RL}	[ms]	4,5	7,0	12,5	6,1
n _o	[1/min]	200	200	100	100
N _{max}	[1/min]	400	400	400	200
P _{w,in}	[W]	3660	6590	6700	8280
P _{w,out}	[W]	1570	2930	2510	4090
P _{W,DIS}	[W]	2090	3660	4190	1490
Q _{W,5K}	[dm3/min]	6,0	12,0	12,0	12,0
Q _{wr,5K}	[dm3/min]				5,0
$M_{\sf max}$	[Nm]	135	280	480	682
I _{max}	[A]	27	23	27	27
Mw	[Nm]	75	140	240	391
l _w	[A]	15	11,5	13,3	15
Κ _U	[V*min/1000]	300	670	1090	1580
Κ _τ	[Nm/A]	5,0	11,0	18,0	26,1
K _M	[Nm/√W]	2,3	3,2	6,4	7,1

Motortyp 240, Nenndrehzahl 300/min, mit Wasserkühlung

Motorbau	240/1	
Stator-	6.0181.002	
0	[mm]	180
PP		21
AL	[mm]	25
U₀/Û₀	$[V_{eff}/V_P]$	565
U _{max}	[V _P]	650
Ruv	[Ohm]	26,0
L _{uv}	[mH]	51,6
t _{RL}	[ms]	2,0
n _o	[1/min]	290
N _{max}	[1/min]	360
P _{w,in}	[W]	1933
P _{w,out}	[W]	1532
P _{w,DIS}	[W]	401
Q _{W,5K}	[dm3/min]	8,0
Q _{W,R5K}	[dm3/min]	-
M _{max}	[Nm]	103
I _{max}	[A]	6,8
Mw	[Nm]	50
I _w	[A]	3,1
Κυ	[V*min/1000]	1082
Κ _τ	[Nm/A]	16,3
K _M	[Nm/√W]	2,24


Zeichnungen


Motortypen, Kompaktlagereinheiten, Form- u. Lagetoleranzen



Motortyp 115

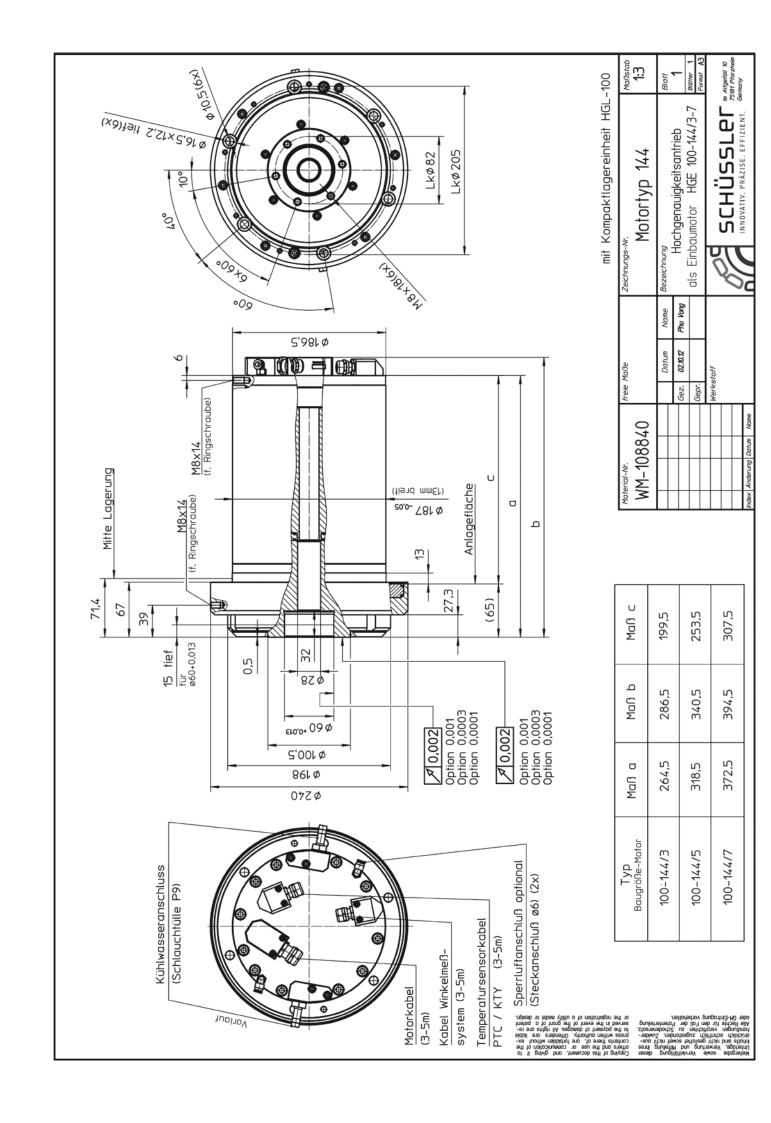
Copying of this document, and giving it to others and the sea or communication of the Confients there of, are frothden without express written authority. Offeraders are liable to the payment of damages. All rights are severed in the event of the grant of a patent on the reastration of a utility model of design.

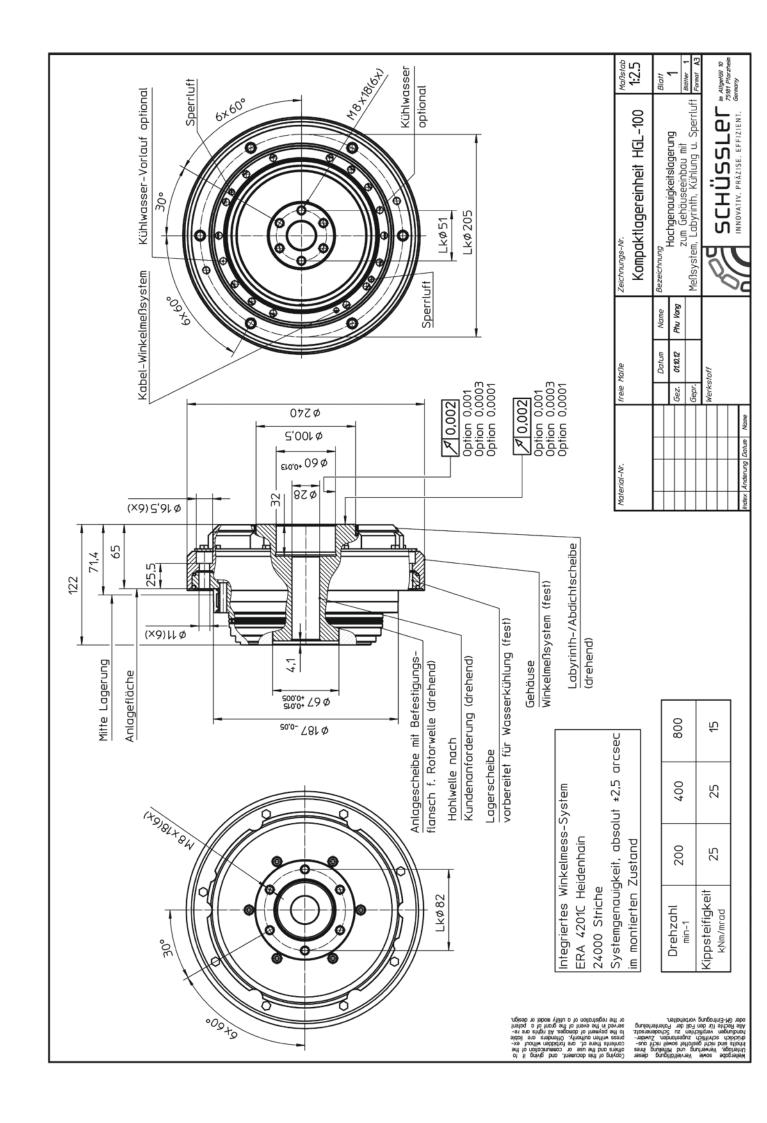
ergoue sower verkranging wesen unleringe, return und Mittellung hies indales sind nicht latel soweit nicht dusdrücklich schriftlich zulanden. Zuwiderhandungen verglächten zu Schorenstiz Allie Rechte für den Fall der Patentiung oder GM-Entrogung vorbehalten. Motortyp 115

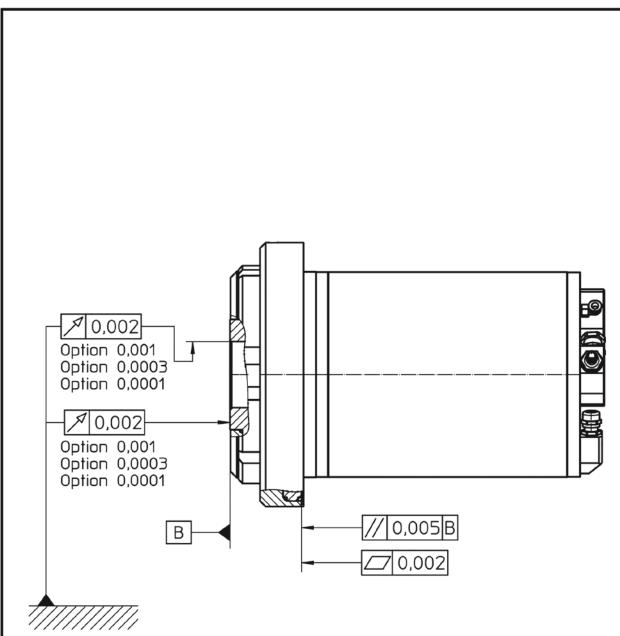
HGE-80-115/1-4

Hochgenauigkeitsantrieb als Einbaumotor

Form- und Lagetoleranzen




lm Altgefäll 10 75181 Pforzheim Germany


Blatt 2

Motortyp 144

bying of this document, and giving it to others and the use or communication of the Confletis there of, are the conflicted without express within a cultinative, Offenders are liable to the poyners of admages. All rights are existed to the grant of a patent of the expense of the large of the grant of a patent of the resistation of a utility model of design.

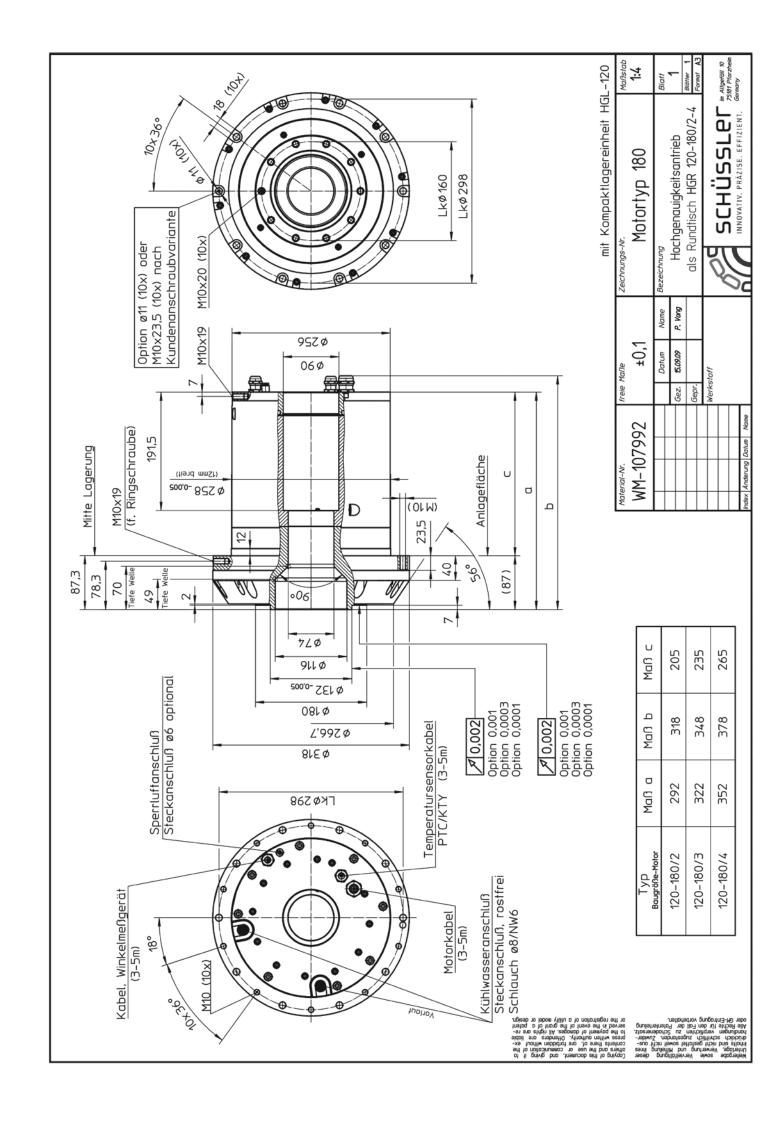
atergabe sowe Verveirditigung deser Unterlage swertung und Mitelaung hies inhalled sind nicht salarled. Soweil nicht ausdrücklich schrifflich zu standen. Zuwiehrnadungen verpflichten zu Schonersalz, als eich Fachte für den Fall der Palentleung oder GH-Einingung vorbehalten.

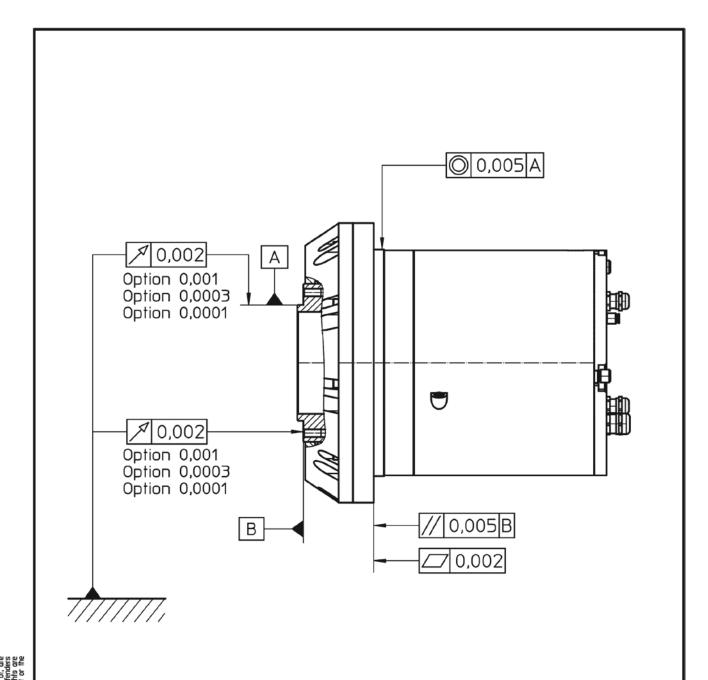
Motortyp 144

HGE 100-144/3-7

Hochgenauigkeitsantrieb als Einbaumotor

Form- und Lagetoleranzen


lm Altgefäll 10 75181 Pforzheim


Blatt 2

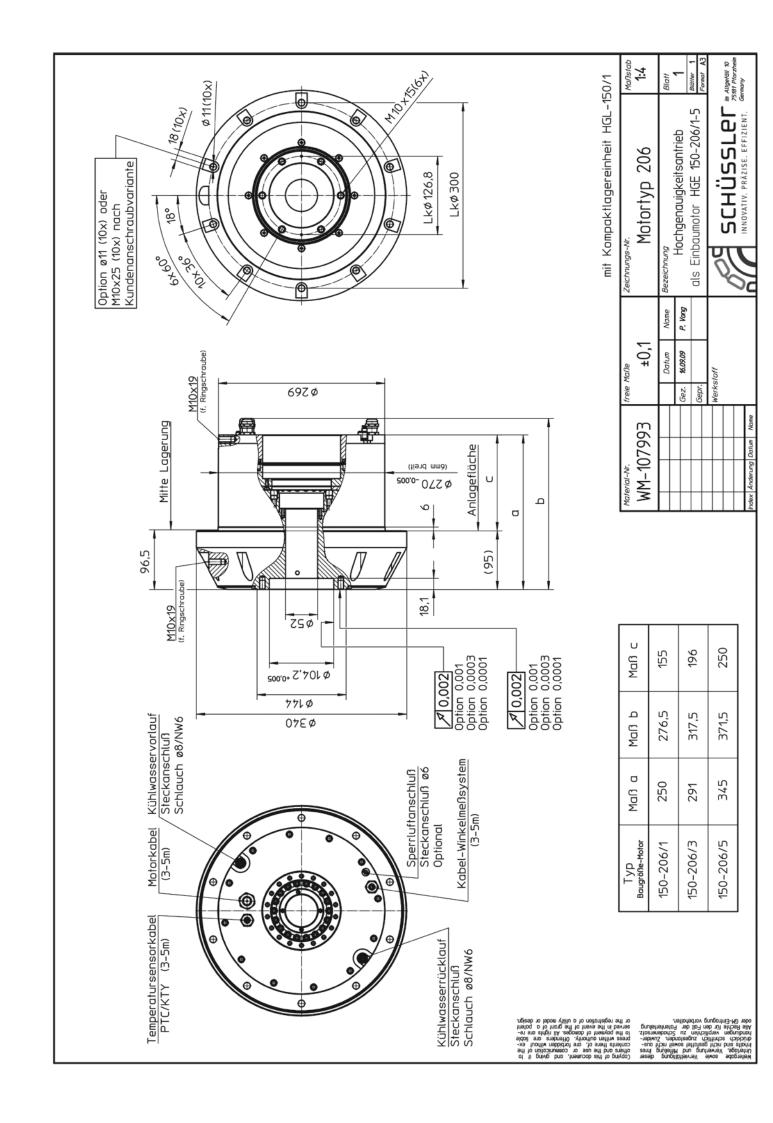
Motortyp 180

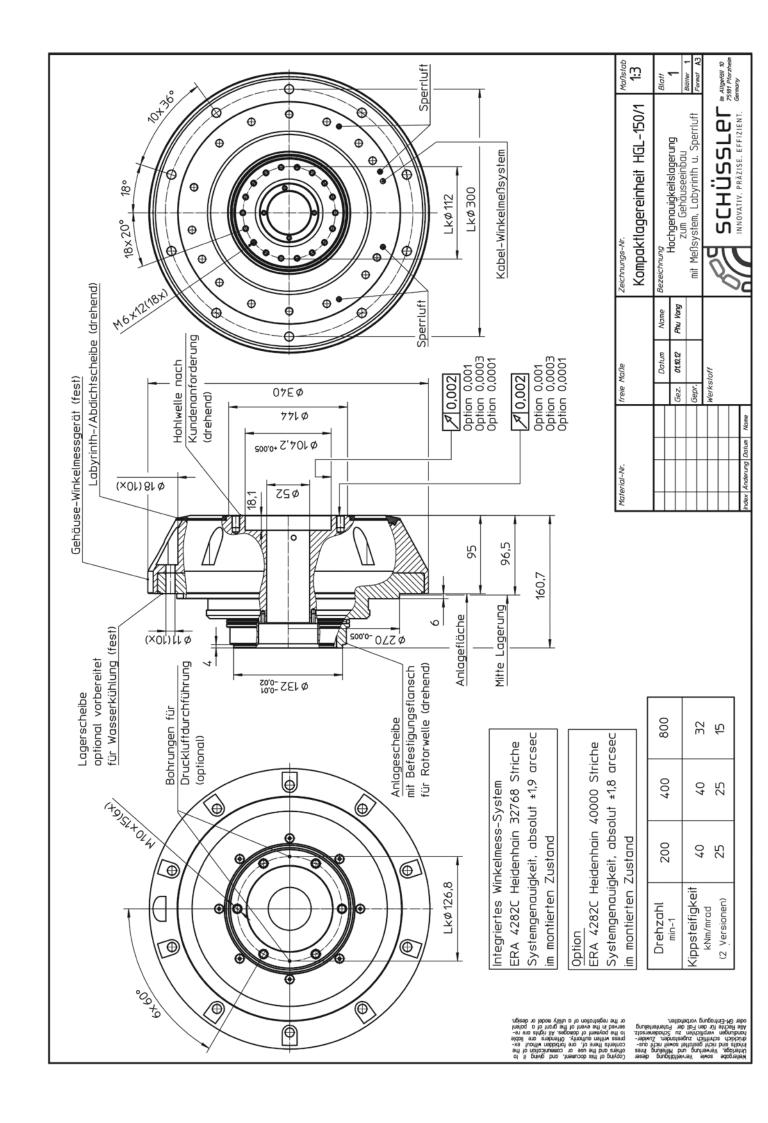
Motortyp 180

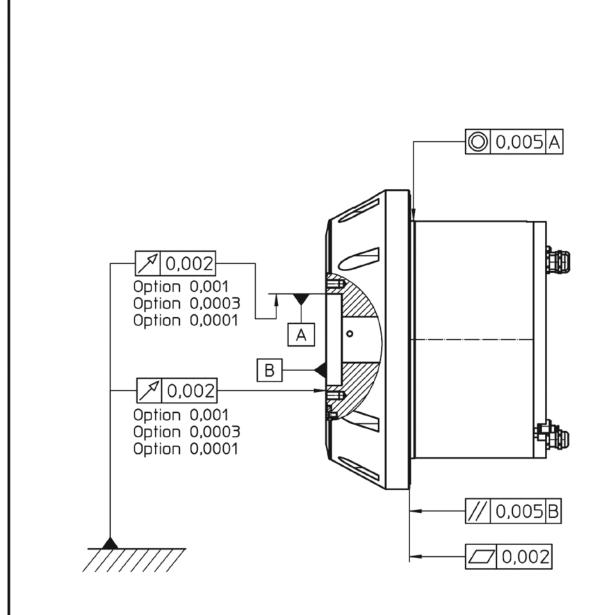
HGR 120-180/2-4

Hochgenauigkeitsantrieb als Rundtisch

Form- und Lagetoleranzen




Im Altgefäll 10 75181 Pforzheim Germany


leteradae sovie Vervielititigung dieser Untertage, etwertung ber und Mittellung Free Infralles sind nicht estatitet sowiel richt duschrücklich schriftlich zu-estanden, Zuwiderbandungen verpflichten zu Schaenerstat Alle Rechte für den Fall der Patentrielung oder GA-Entingung vorbendtlen.

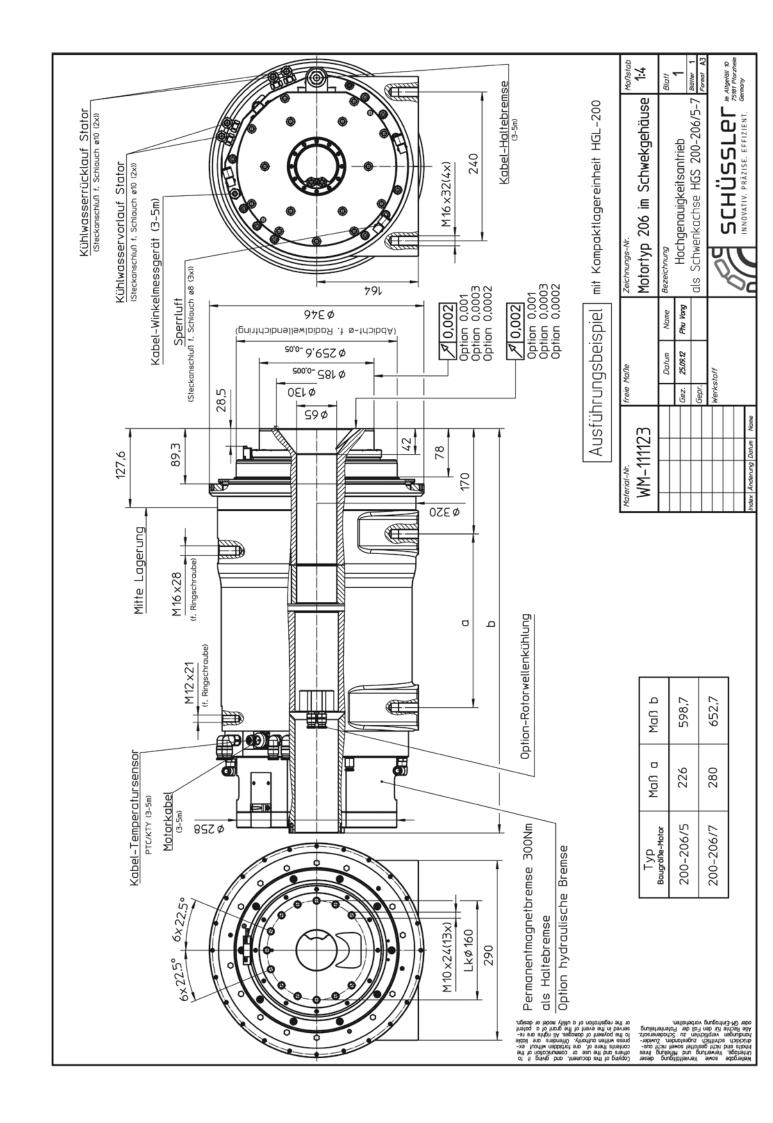
Motortyp 206

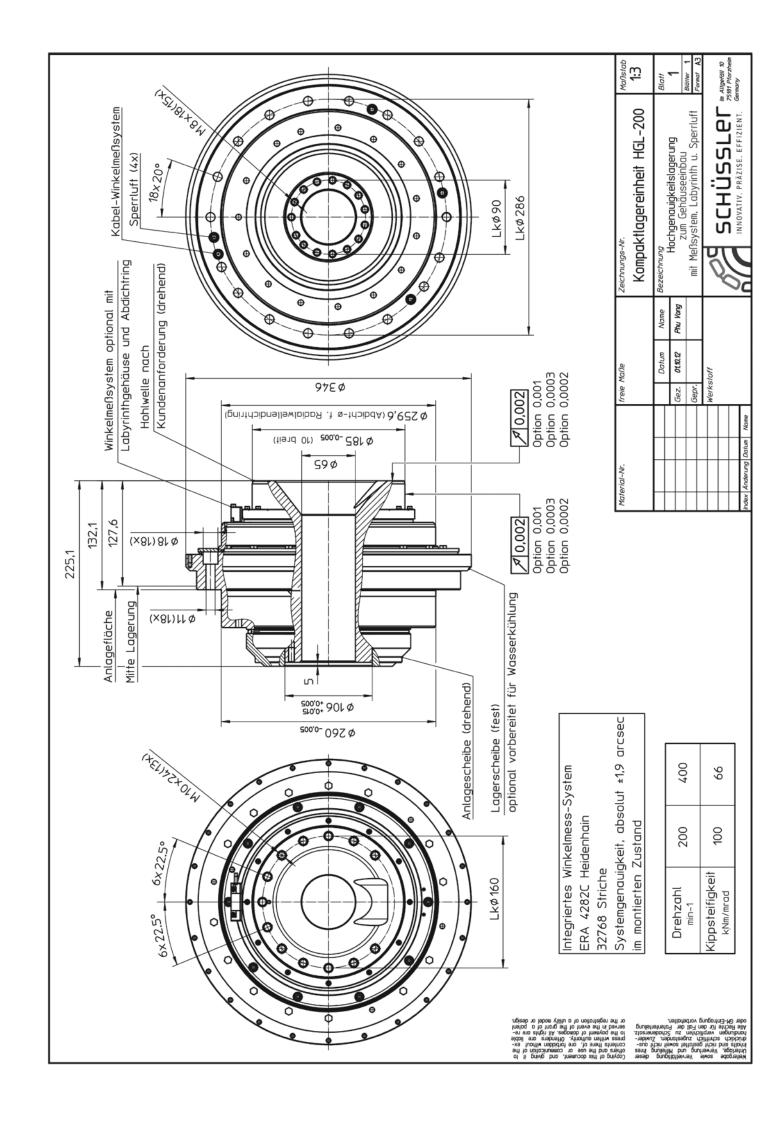
in the use or communication of the contains their to the trade without express within outlineting. — are liddle to the poywent of compass. All in reserved in the event of the agont of a poil registration of a utility mode or design.

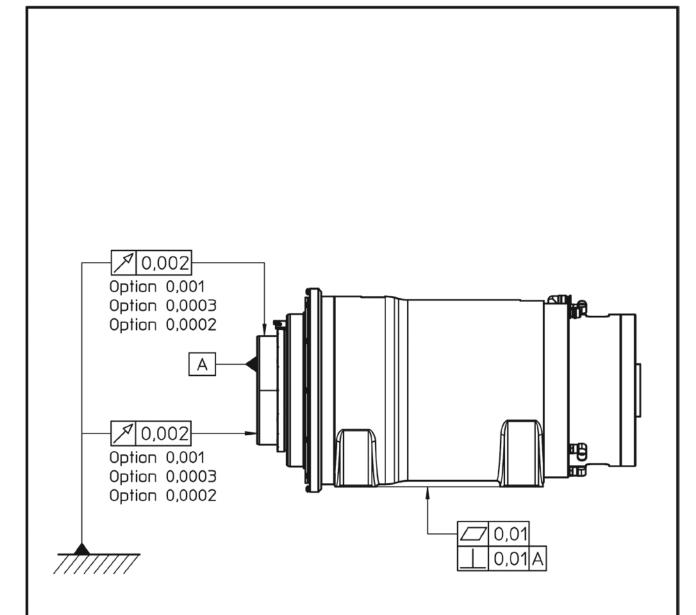
elergabe sowe Verveliditioning deser Unterlo ervertung und Affelung hres Inhaltes sind ni estander, Zünderbundungen verpflichten zu Sch enersaltz, Alle Rechte für den Foll der Paler riellung oder GM-Eintragung vorbehalten. Motortyp 206 HGE 150-206/1-5

Hochgenauigkeitsantrieb als Einbaumotor

Form- und Lagetoleranzen



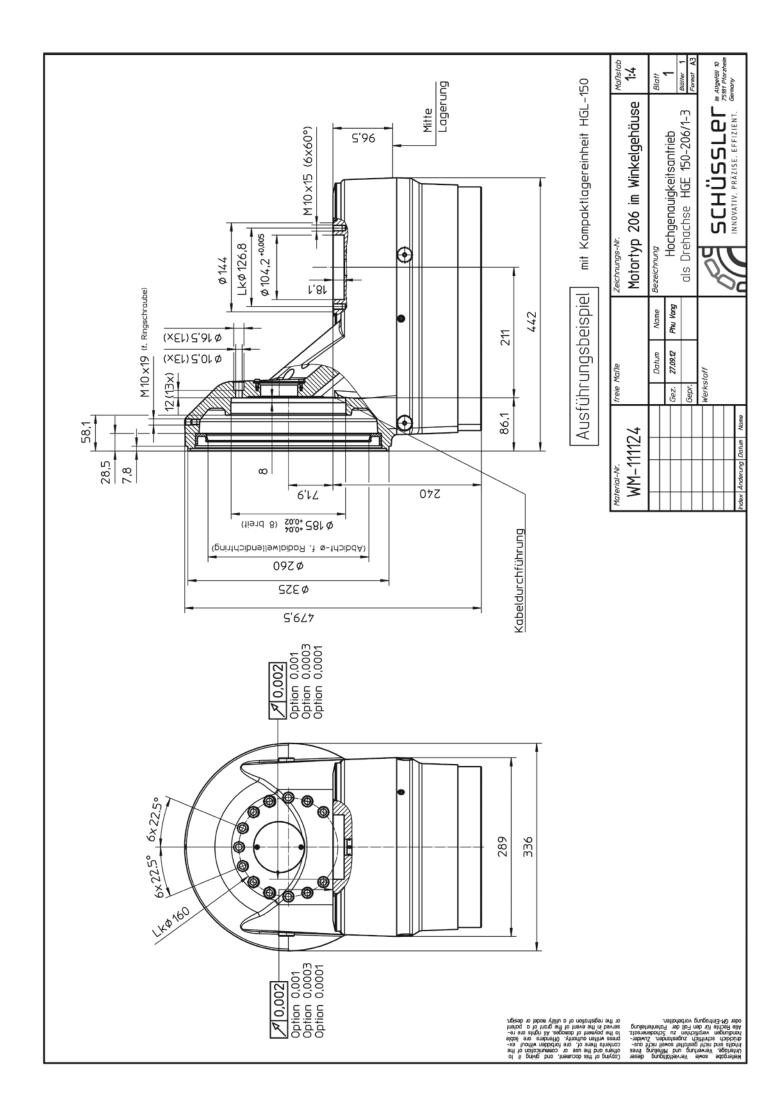

im Altgefäll 10 75181 Pforzheim Germany

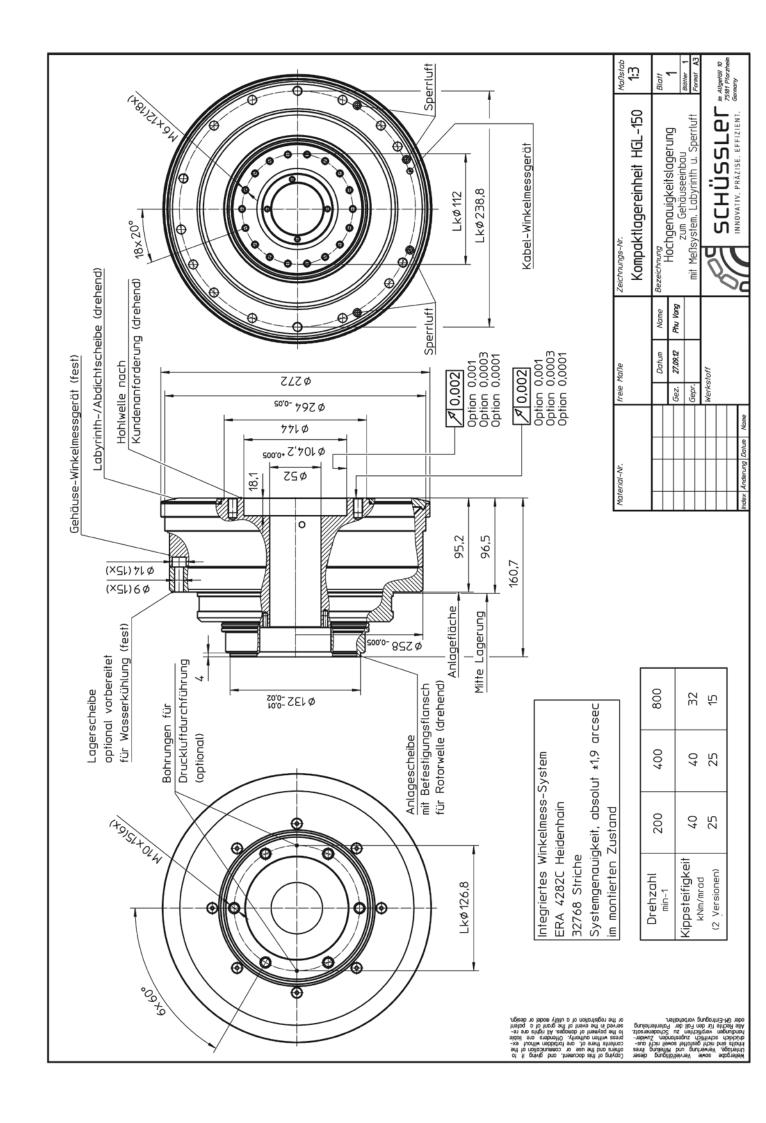

Blatt 2

Motortyp 206 im Schwenkgehäuse

Any of this document, and gying it to others and eues or communication of the Contients there of, are teledor without express within a sufficient Vitraders is liable to the payment of domages. All infinite are event of the grant of a patent or the agrant of a patent or the agrantion of a utility model of design.

elergabe sowe Verveltdingung dieser Untertog zweifung und Mittelung hres Inhaltes sind nic situatiel soweit nicht dusdrücklich schriftlich, situatien. Zuwiderhandungen verpflichten zu Sch zweisaltz. Alle Rechte für den Fall der Pater tellung oder GH-Einfragung vorbehalten. Motortyp 206 im Schwenkgehäuse HGS 200-206/5-7 Hochgenauigkeitsantrieb als Schwenkachse

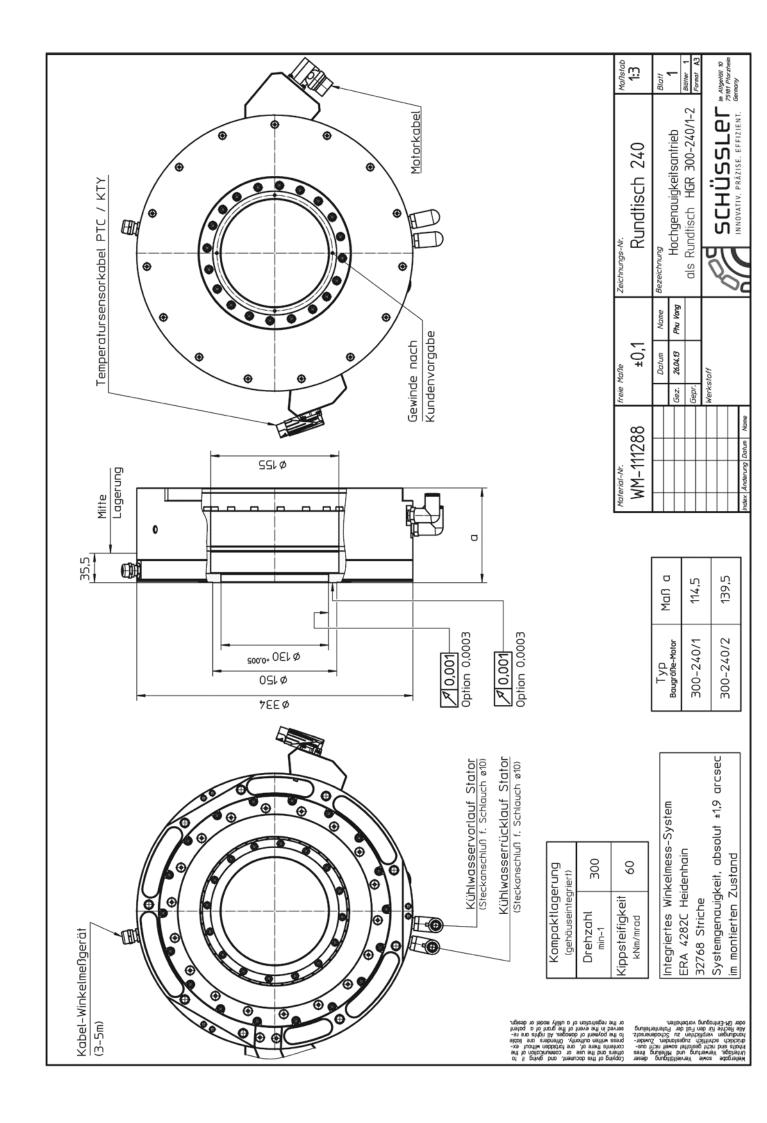

Form- und Lagetoleranzen

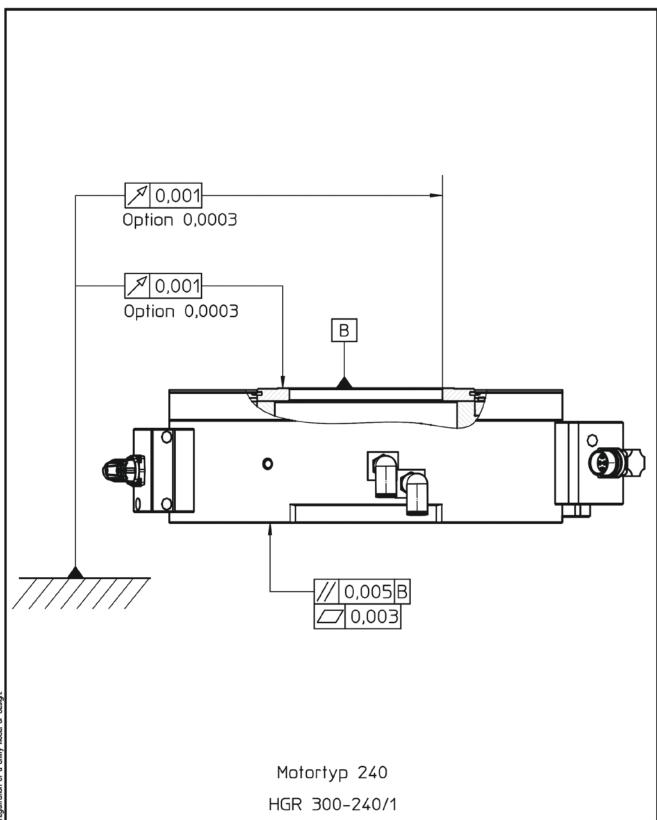


Right

Motortyp 206 im Winkelgehäuse

opying of this document, and giving it to others and the use or communication of the confenis there of, are chidden without express written cuthority. Offenders are table to the payment of damages. All rights are eserved in the event of the groun of a patent or the cestimation of a utility model or design;


ergobe sowe Evenerforgung deser Unterloge methog und Mittelung firse intalles sind infolitiet tonden. Zuwischnicht duschückfuch schrifflich zu ersotz. Zuwischnichtungen verpflichten zu Scho ersotz. Alle Rechte für den Folitiet inton oder Git-Einfonung vorbehollen. Motortyp 206 im Winkelgehäuse HGE 150-206/1-3 Hochgenauigkeitsantrieb als Drehachse


Form- und Lagetoleranzen

Motortyp 240 als Rundtisch

Hochgenauigkeitsantrieb als Rundtisch

Form- und Lagetoleranzen

Die Weitergabe sowie Vervielfältigung dieser Unterlage, Verwertung und Mitteilung ihres Inhalts sind nicht gestattet soweit nicht ausdrücklich schriftlich zugestanden.

Zuwiderhandlungen verpflichten zu Schadensersatz. Alle Rechte für den Fall der Patenterteilung oder GM-Eintragung vorbehalten.

